人臉識(shí)別,特指利用分析比較人臉視覺(jué)特征信息進(jìn)行身份鑒別的計(jì)算機(jī)技術(shù)。人臉識(shí)別是用攝像機(jī)或攝像頭采集含有人臉的圖像或視頻流,并自動(dòng)在圖像中檢測(cè)和跟蹤人臉,進(jìn)而對(duì)檢測(cè)到的人臉進(jìn)行臉部的一系列相關(guān)技術(shù),通常也叫做人像識(shí)別、面部識(shí)別。
“人臉識(shí)別系統(tǒng)”集成了人工智能、機(jī)器識(shí)別、機(jī)器學(xué)習(xí)、模型理論、專家系統(tǒng)、視頻圖像處理等多種專業(yè)技術(shù),其核心技術(shù)的實(shí)現(xiàn),展現(xiàn)了弱人工智能向強(qiáng)人工智能的轉(zhuǎn)化。
1主要特點(diǎn)
傳統(tǒng)的人臉識(shí)別技術(shù)主要是基于可見(jiàn)光圖像的人臉識(shí)別,這也是人們熟悉的識(shí)別方式,已有30多年的研發(fā)歷史。但這種方式有著難以克服的缺陷,尤其在環(huán)境光照發(fā)生變化時(shí),識(shí)別效果會(huì)急劇下降,無(wú)法滿足實(shí)際系統(tǒng)的需要。解決光照問(wèn)題的方案有三維圖像人臉識(shí)別,和熱成像人臉識(shí)別。但這兩種技術(shù)還遠(yuǎn)不成熟,識(shí)別效果不盡人意。
迅速發(fā)展起來(lái)的一種解決方案是基于主動(dòng)近紅外圖像的多光源人臉識(shí)別技術(shù)。它可以克服光線變化的影響,已經(jīng)取得了卓越的識(shí)別性能,在精度、穩(wěn)定性和速度方面的整體系統(tǒng)性能超過(guò)三維圖像人臉識(shí)別。這項(xiàng)技術(shù)在近兩三年發(fā)展迅速,使人臉識(shí)別技術(shù)逐漸走向?qū)嵱没?/span>
人臉與人體的其它生物特征(指紋、虹膜等)一樣與生俱來(lái),它的唯一性和不易被復(fù)制的良好特性為身份鑒別提供了必要的前提,與其它類型的生物識(shí)別比較人臉識(shí)別具有如下特點(diǎn):
非強(qiáng)制性:用戶不需要專門(mén)配合人臉采集設(shè)備,幾乎可以在無(wú)意識(shí)的狀態(tài)下就可獲取人臉圖像,這樣的取樣方式?jīng)]有“強(qiáng)制性”;
非接觸性:用戶不需要和設(shè)備直接接觸就能獲取人臉圖像;
并發(fā)性:在實(shí)際應(yīng)用場(chǎng)景下可以進(jìn)行多個(gè)人臉的分揀、判斷及識(shí)別;
除此之外,還符合視覺(jué)特性:“以貌識(shí)人”的特性,以及操作簡(jiǎn)單、結(jié)果直觀、隱蔽性好等特點(diǎn)。
2發(fā)展歷史
人臉識(shí)別系統(tǒng)的研究始于20世紀(jì)60年代,80年代后隨著計(jì)算機(jī)技術(shù)和光學(xué)成像技術(shù)的發(fā)展得到提高,而真正進(jìn)入初級(jí)的應(yīng)用階段則在90年后期,并且以美國(guó)、德國(guó)和日本的技術(shù)實(shí)現(xiàn)為主;人臉識(shí)別系統(tǒng)成功的關(guān)鍵在于是否擁有尖端的核心算法,并使識(shí)別結(jié)果具有實(shí)用化的識(shí)別率和識(shí)別速度;“人臉識(shí)別系統(tǒng)”集成了人工智能、機(jī)器識(shí)別、機(jī)器學(xué)習(xí)、模型理論、專家系統(tǒng)、視頻圖像處理等多種專業(yè)技術(shù),同時(shí)需結(jié)合中間值處理的理論與實(shí)現(xiàn),是生物特征識(shí)別的最新應(yīng)用,其核心技術(shù)的實(shí)現(xiàn),展現(xiàn)了弱人工智能向強(qiáng)人工智能的轉(zhuǎn)化。
3技術(shù)流程
人臉識(shí)別系統(tǒng)主要包括四個(gè)組成部分,分別為:人臉圖像采集及檢測(cè)、人臉圖像預(yù)處理、人臉圖像特征提取以及匹配與識(shí)別。
采集及檢測(cè)
人臉圖像采集:不同的人臉圖像都能通過(guò)攝像鏡頭采集下來(lái),比如靜態(tài)圖像、動(dòng)態(tài)圖像、不同的位置、不同表情等方面都可以得到很好的采集。當(dāng)用戶在采集設(shè)備的拍攝范圍內(nèi)時(shí),采集設(shè)備會(huì)自動(dòng)搜索并拍攝用戶的人臉圖像。
人臉檢測(cè):人臉檢測(cè)在實(shí)際中主要用于人臉識(shí)別的預(yù)處理,即在圖像中準(zhǔn)確標(biāo)定出人臉的位置和大小。人臉圖像中包含的模式特征十分豐富,如直方圖特征、顏色特征、模板特征、結(jié)構(gòu)特征及Haar特征等。人臉檢測(cè)就是把這其中有用的信息挑出來(lái),并利用這些特征實(shí)現(xiàn)人臉檢測(cè)。
主流的人臉檢測(cè)方法基于以上特征采用Adaboost學(xué)習(xí)算法,Adaboost算法是一種用來(lái)分類的方法,它把一些比較弱的分類方法合在一起,組合出新的很強(qiáng)的分類方法。
人臉檢測(cè)過(guò)程中使用Adaboost算法挑選出一些最能代表人臉的矩形特征(弱分類器),按照加權(quán)投票的方式將弱分類器構(gòu)造為一個(gè)強(qiáng)分類器,再將訓(xùn)練得到的若干強(qiáng)分類器串聯(lián)組成一個(gè)級(jí)聯(lián)結(jié)構(gòu)的層疊分類器,有效地提高分類器的檢測(cè)速度。
預(yù)處理
人臉圖像預(yù)處理:對(duì)于人臉的圖像預(yù)處理是基于人臉檢測(cè)結(jié)果,對(duì)圖像進(jìn)行處理并最終服務(wù)于特征提取的過(guò)程。系統(tǒng)獲取的原始圖像由于受到各種條件的限制和隨機(jī)干擾,往往不能直接使用,必須在圖像處理的早期階段對(duì)它進(jìn)行灰度校正、噪聲過(guò)濾等圖像預(yù)處理。對(duì)于人臉圖像而言,其預(yù)處理過(guò)程主要包括人臉圖像的光線補(bǔ)償、灰度變換、直方圖均衡化、歸一化、幾何校正、濾波以及銳化等。
特征提取
人臉圖像特征提取:人臉識(shí)別系統(tǒng)可使用的特征通常分為視覺(jué)特征、像素統(tǒng)計(jì)特征、人臉圖像變換系數(shù)特征、人臉圖像代數(shù)特征等。人臉特征提取就是針對(duì)人臉的某些特征進(jìn)行的。人臉特征提取,也稱人臉表征,它是對(duì)人臉進(jìn)行特征建模的過(guò)程。人臉特征提取的方法歸納起來(lái)分為兩大類:一種是基于知識(shí)的表征方法;另外一種是基于代數(shù)特征或統(tǒng)計(jì)學(xué)習(xí)的表征方法。
基于知識(shí)的表征方法主要是根據(jù)人臉器官的形狀描述以及他們之間的距離特性來(lái)獲得有助于人臉?lè)诸惖奶卣鲾?shù)據(jù),其特征分量通常包括特征點(diǎn)間的歐氏距離、曲率和角度等。人臉由眼睛、鼻子、嘴、下巴等局部構(gòu)成,對(duì)這些局部和它們之間結(jié)構(gòu)關(guān)系的幾何描述,可作為識(shí)別人臉的重要特征,這些特征被稱為幾何特征。基于知識(shí)的人臉表征主要包括基于幾何特征的方法和模板匹配法。
匹配與識(shí)別
人臉圖像匹配與識(shí)別:提取的人臉圖像的特征數(shù)據(jù)與數(shù)據(jù)庫(kù)中存儲(chǔ)的特征模板進(jìn)行搜索匹配,通過(guò)設(shè)定一個(gè)閾值,當(dāng)相似度超過(guò)這一閾值,則把匹配得到的結(jié)果輸出。人臉識(shí)別就是將待識(shí)別的人臉特征與已得到的人臉特征模板進(jìn)行比較,根據(jù)相似程度對(duì)人臉的身份信息進(jìn)行判斷。這一過(guò)程又分為兩類:一類是確認(rèn),是一對(duì)一進(jìn)行圖像比較的過(guò)程,另一類是辨認(rèn),是一對(duì)多進(jìn)行圖像匹配對(duì)比的過(guò)程。
4識(shí)別算法
人臉識(shí)別一般來(lái)說(shuō),人臉識(shí)別系統(tǒng)包括圖像攝取、人臉定位、圖像預(yù)處理、以及人臉識(shí)別(身份確認(rèn)或者身份查找)。系統(tǒng)輸入一般是一張或者一系列含有未確定身份的人臉圖像,以及人臉數(shù)據(jù)庫(kù)中的若干已知身份的人臉圖象或者相應(yīng)的編碼,而其輸出則是一系列相似度得分,表明待識(shí)別的人臉的身份。
人臉識(shí)別算法分類
基于人臉特征點(diǎn)的識(shí)別算法(Feature-based recognition algorithms)。
基于整幅人臉圖像的識(shí)別算法(Appearance-based recognition algorithms)。
基于模板的識(shí)別算法(Template-based recognition algorithms)。
利用神經(jīng)網(wǎng)絡(luò)進(jìn)行識(shí)別的算法(Recognition algorithms using neural network)。
基于光照估計(jì)模型理論
提出了基于Gamma灰度矯正的光照預(yù)處理方法,并且在光照估計(jì)模型的基礎(chǔ)上,進(jìn)行相應(yīng)的光照補(bǔ)償和光照平衡策略。
優(yōu)化的形變統(tǒng)計(jì)校正理論
基于統(tǒng)計(jì)形變的校正理論,優(yōu)化人臉姿態(tài);強(qiáng)化迭代理論
強(qiáng)化迭代理論是對(duì)DLFA人臉檢測(cè)算法的有效擴(kuò)展;
獨(dú)創(chuàng)的實(shí)時(shí)特征識(shí)別理論
該理論側(cè)重于人臉實(shí)時(shí)數(shù)據(jù)的中間值處理,從而可以在識(shí)別速率和識(shí)別效能之間,達(dá)到最佳的匹配效果
當(dāng)我們還在感嘆科幻電影里一幕幕不可思議的場(chǎng)景時(shí),一覺(jué)醒來(lái)已經(jīng)步入刷臉時(shí)代,隨著人臉識(shí)別技術(shù)的不斷更新,隨著各行業(yè)爭(zhēng)先恐后的試水,人臉識(shí)別技術(shù)正在不知不覺(jué)中改變我們的生活:如果你還停留在iPhone X的Face ID中沒(méi)醒過(guò)來(lái),快來(lái)看看農(nóng)村的變化吧!快遞到村里、手機(jī)支付等,早已改變了我們的生活,如今農(nóng)行讓“刷臉取款”覆蓋全中國(guó),走進(jìn)我們從未想過(guò)的農(nóng)村鄉(xiāng)鎮(zhèn)!
短短半個(gè)月,我們的這張臉就已經(jīng)開(kāi)始取代:銀行卡、身份證、手機(jī)、火車(chē)票,乃至開(kāi)門(mén)的鑰匙。
馬云說(shuō),未來(lái)憑一張臉就能在全世界暢通無(wú)阻。他沒(méi)有天馬行空,這一天正離我們?cè)絹?lái)越近!
所以,
永遠(yuǎn)不要覺(jué)得創(chuàng)新的大潮離自己還有很遠(yuǎn)。農(nóng)行的一個(gè)舉動(dòng),就讓刷臉取款走進(jìn)你老家的村頭。
永遠(yuǎn)不要低估時(shí)代變化的速度。它常常掀起一陣風(fēng),你還沒(méi)有反應(yīng)過(guò)來(lái),傾盆大雨就突然襲來(lái)。
永遠(yuǎn)不要相信一成不變。你現(xiàn)在離不開(kāi)的鑰匙、手機(jī)、身份證,也許下一秒就消失得無(wú)影無(wú)蹤。
未來(lái)的世界會(huì)越來(lái)越高效、越來(lái)越公平,會(huì)創(chuàng)造出越來(lái)越多的福利。但你不擁抱,就沒(méi)有機(jī)會(huì)。
不要等村頭李大爺都靠一張臉取款、購(gòu)物了,你還在家里翻箱倒柜找你那張已經(jīng)泛黃的銀行卡。
快醒醒吧!AI時(shí)代已來(lái)臨,請(qǐng)狠狠洗一把臉,讓我們一起迎接這個(gè)全新的時(shí)代!還有更多關(guān)于人臉識(shí)別的應(yīng)用,不同的行業(yè)不同的需求,唯一不變的是在這個(gè)刷臉的時(shí)代,昊暢達(dá)給足你面兒!為您定制專屬解決方案,昊暢達(dá)——為安全而戰(zhàn)!